Abstract
Ibrutinib is associated with dramatic efficacy against B-cell malignancies. Yet, it has been linked with potentially limiting cardiotoxicity, including emerging reports of profound hypertension (HTN). The long-term incidence, severity, and impact of HTN development with ibrutinib are unknown. Therefore, in 562 consecutive patients treated with ibrutinib for B-cell malignancies from 2009 through 2016, we assessed the new/incident or worsened HTN (systolic blood pressure [BP] cutoff, 130 mm Hg). Observed incident HTN rates were compared with Framingham-heart-predicted incident HTN rates. We also evaluated the relationship of HTN to the development of other major adverse cardiovascular events (MACEs), including arrhythmia, myocardial infarction, stroke, heart failure, and cardiovascular death. Further, we assessed the effects of different antihypertensive classes on ibrutinib-related HTN. Overall, 78.3% of ibrutinib users developed new or worsened HTN over a median of 30 months. New HTN developed in 71.6% of ibrutinib users, with a time to 50% cumulative incidence of 4.2 months. Among those without preceding HTN, 17.7% developed high-grade HTN (BP >160/100 mm Hg). In multivariate regression, new or worsened HTN was associated with increased MACEs (hazard ratio [HR], 2.17; 95% confidence interval [CI], 1.08-4.38). No single antihypertensive class was associated with prevention or control of ibrutinib-related HTN. However, antihypertensive initiation was associated with a lower risk of a MACE (HR, 0.40; 95% CI, 0.24-0.66). Collectively, these data suggest that ibrutinib is associated with a substantial increase in the incidence and severity of HTN, and that HTN development carries a higher risk of subsequent cardiotoxic events.
PMID: 31582362 [PubMed - indexed for MEDLINE]
19 March 2020
14:43
Cardiotoxicity News
Photo
Not included, change data exporting settings to download.
256×256, 6.0 KB
14:43
In reply to this message
pubmed: tutte cardiotoxicity...
GATA4-targeted compound exhibits cardioprotective actions against doxorubicin-induced toxicity in vitro and in vivo: establishment of a chronic cardiotoxicity model using human iPSC-derived cardiomyocytes.
Related Articles
GATA4-targeted compound exhibits cardioprotective actions against doxorubicin-induced toxicity in vitro and in vivo: establishment of a chronic cardiotoxicity model using human iPSC-derived cardiomyocytes.
Arch Toxicol. 2020 Mar 17;:
Authors: Karhu ST, Kinnunen SM, Tölli M, Välimäki MJ, Szabó Z, Talman V, Ruskoaho H
Abstract
Doxorubicin is a widely used anticancer drug that causes dose-related cardiotoxicity. The exact mechanisms of doxorubicin toxicity are still unclear, partly because most in vitro studies have evaluated the effects of short-term high-dose doxorubicin treatments. Here, we developed an in vitro model of long-term low-dose administration of doxorubicin utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Moreover, given that current strategies for prevention and management of doxorubicin-induced cardiotoxicity fail to prevent cancer patients developing heart failure, we also investigated whether the GATA4-targeted compound 3i-1000 has cardioprotective potential against doxorubicin toxicity both in vitro and in vivo. The final doxorubicin concentration used in the chronic toxicity model in vitro was chosen based on cell viability data evaluation. Exposure to doxorubicin at the concentrations of 1-3 µM markedly reduced (60%) hiPSC-CM viability already within 48 h, while a 14-day treatment with 100 nM doxorubicin concentration induced only a modest 26% reduction in hiPCS-CM viability. Doxorubicin treatment also decreased DNA content in hiPSC-CMs. Interestingly, the compound 3i-1000 attenuated doxorubicin-induced increase in pro-B-type natriuretic peptide (proBNP) expression and caspase-3/7 activation in hiPSC-CMs. Moreover, treatment with 3i-1000 for 2 weeks (30 mg/kg/day, i.p.) inhibited doxorubicin cardiotoxicity by restoring left ventricular ejection fraction and fractional shortening in chronic in vivo rat model. In conclusion, the results demonstrate that long-term exposure of hiPSC-CMs can be utilized as an in vitro model of delayed doxorubicin-induced toxicity and provide in vitro and in vivo evidence that targeting GATA4 may be an effective strategy to counteract doxorubicin-induced cardiotoxicity.
PMID: 32185414 [PubMed - as supplied by publisher]
14:43
Photo
Not included, change data exporting settings to download.
256×256, 6.0 KB
14:43
In reply to this message
pubmed: tutte cardiotoxicity...
In vitro compatibility and stability of admixtures containing etoposide, epirubicin hydrochloride and vindesine sulphate in a single infusion bag.
//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7388-69-wiley-full-text.png Related Articles
In vitro compatibility and stability of admixtures containing etoposide, epirubicin hydrochloride and vindesine sulphate in a single infusion bag.
J Clin Pharm Ther. 2019 Dec;44(6):875-882
Authors: Li J, Yao C, Xu Y, Ping P, Yin H, Sun Y
No comments:
Post a Comment
اكتب تعليق حول الموضوع